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The diffraction of a strong shock wave at a wedge is investigated on the assumption of a small  differ- 
ence between the proper t ies  of the medium and the wedge. The wedge angle and its location relative to the 
wave front are  a rb i t ra ry .  

At the high p r e s su re s  and t empera tu res  occurr ing  behind a strong shock (P~ 106 atm) it is reasonable 
in many cases  in a theoret ical  t rea tment  to neglect the res is tance  of the mater ia l  and to descr ibe  its state 
by comparat ively  simple models of the medium, e.g., the perfect  fluid model. Comparison of the resul ts  of 
such a t rea tment  with experiment yields boundaries for  the application of the model and a direct  indication 
of the effect of the neglected fac tors .  

The problem addressed  here reduces to a Hilbert problem. It turns out that the condition for the exist-  
ence of a solution to the Hilbert problem in a class  of functions having a zero  of at least  second order  at in- 
finity is identically the condition for  stability of the shock wave in a homogeneous medium [1, 2]. 

1. A plane s trong stat ionary shock wave, moving through a homogeneous uns t ressed  medium with 
speed Do, meets  a wedge embedded in the medium at time t = 0. The faces of the wedge make angles o~1 and 
~2 with the surface of the wave front; Po, V0, and U 0 are,  respectively,  the p ressure ,  specific volume, and 
m a s s  velocity behind the incident shock, 0, V, 0 and 0, V', 0 being, respectively,  their  values ahead of the 
front in the medium and in the wedge; V . ~  ~ (P) and V .=  V. (P) are  the normal  shock adiabat equations 
for the material of the medium and wedge, giving the specific volumes as a function of pressure. 

The initial densities and the behavior of the materials of the medium and wedge when shock loaded are 
not very different. We introduce the parameter 

e = m a x  I V .  ~ (P) - -  v ,  (/') I 0 < P ~ -P' (P' > Pc) 
V, ~ (P) 

Then for g = 0 the shock wave does not see the wedge; and for  ~ <<1 we address  the problem of de ter -  
mining the small  per turbat ions resul t ing f rom diffraction of all the quantities, in a l inear  approximation. 
Here we still consider  that the o rde r  of smal lness  of the p res su re  per turbat ions is less  than that of mate-  
r ial  s t rength proper t ies  behind the shock, so that effects associa ted with the strength can be neglected. We 
note that as the shock strength increases ,  so does the role of the thermal  components of the p res su re  and 
internal energy of the mater ia l  behind the shock (in the limit the solid behaves as  a gas) [3]. Accordingly,  
the role of the strength proper t ies  diminishes.  Therefore ,  the above approximation makes sense. 

It is reasonable to postulate that the speed of sound in the medium and in the wedge behind the shock 
differ by only a small amount. Hereaf ter  we shall neglect this difference (and therefore  drop t e rms  of higher 
o rder  of smal lness  in the corresponding equations) and assume the sound speed everywhere behind the front 
to be c. 

We postulate that the inequality D0-U 0 < c is satisfied. Then for a 1, 2 <a  *, where a .  is the l imiting 
angle, whose valu e will be determined below f rom the condition of regular  refract ion of the shock at the faces of 
the wedge, the picture of the diffraction is as shown in Fig. 1. Then, in the vicinity of the points of intersect ion of 
the shock front with the wedge faces,  a t r iangular  wave configuration is formed with incident and ref rac ted  
shocks and reflected sound waves and flow zones with constant pa rame te r s .  An unsteady disturbance propa-  
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gates f rom the wedge center  displaced by the flow, bounded by the arc  of the Mach c i rc le  ABCD and the 
attached fronts of reflected sound waves, and by the shock wave section AD. 

Fo r  ~1, 2 > or. in the vicinity of the points of in tersect ion of the shock front with the wedge faces, there 
is nonregular  refract ion (Fig. 2). There  is only one region of unsteady flow which spans the sections of the 
shock wave outside the wedge. For  a I > c~,, ~ z< ~ .  and vice versa  the picture of the diffraction is c lear ly  
a combination of the above cases .  

We introduce a sys tem of coordinates  xty ' fixed at the moving center  of the wedge, and the following 
notation for  quantities in the per turbed region: P -  p ressure ,  U - U  0 - mass  velocity, V and V' 1 - specific 
volumes in the medium and in the wedge. 

Now we wri te  the shock adiabat equation in the fo rm 

v ,  (P) = v ,~  it + By. (P)I (1.1) 
and we approximate to the unknowns in the fo rm 

P ~ P0 + 8p', U - -  U0 m (eu', ew') 

The per turbed quantities p ' ,  u ' ,  and w' satisfy the ordinary  l inear ized equations of two-dimensional  
flow of an ideal compress ib le  fluid. 

The problem considered is one where the functions p' ,  u ' ,  and w' are  homogeneous functions of the co-  
ordinates and the time of zero  measurement .  We introduce the dimensionless  and s imi lar i ty  var iables  

p =  Vop ' /~ ,u=u ' /c ,  w=w' / c ,  x = z ' / c t ,  v=V ' / c t  

The equations for  p, u, and w have the fo rm 

Ou Ow Op Op ( O 0 ) (1.2) 
D p  = ~ + -~v , Du  = ~ "  x , D w  ~ -~v D=x~-x + U ~ -  v 

In o rde r  to derive the conditions in the per turbed section of the shock front, we use Eq. (1.1) to r epre -  
sent V' and V1, V 1' at the front,  and the equation of the front in the fo rm 

r '  = V, (0) = V, ~ (1 + ~v') 

V l ~ V o ( i - - s j o p ' ) ,  V l ' . ~ V o [ t + s ( v o - - l o P ' ) l  for x = k  (1.3) 
x ~ k + ~! (y) 

_ i 
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Then  these  cond i t ions  take the f o r m  

in  the m e d i u m  

in  the wedge 

p = A  ( / - - y f ) ,  u = B p ;  w =  - - M / "  for x =  k 

p = A ( / - -  y/') -}- Aa, u -= B p  + B1, w =  - - M / '  for x = k 

2• kM (2~ -- t) v' -- U, vo i "4-/ A V-~']--]" A1 = - ' -  ~ ~  B - -  = ' 2k 
v' -- nvo [ Vo fro Do - -  Uo __ k~2/o B I = M ~ - ( ~ - - - ~  \ x = ~ - ,  M = _ _ ,  k-- , / c c - - ~ l  

We reduce  the p r o b l e m  to a s e a r c h  for  the s ing le  func t ion  p. The so lu t ion  for  p(x, y) i s  c o n s t r u c t e d  
d i f f e ren t ly  in  the r e g i o n s  r < 1 and  r > 1 (r 2 = x 2 + y2), s ince  the type of equat ion  that  p (x, y) s a t i s f i e s  is  e l l ip t i c  
i n  the f i r s t  r eg ion  and hyperbo l i c  in  the second .  We jo in  these  so lu t ions  a t  the b o u n d a r y  r = 1 to make  them 
con t inuous  [4]; th is  is  done by sa t i s fy ing  the condi t ions  of dyna mi c  and k i n e m a t i c  compa t ib i l i ty .  

F r o m  the cond i t ion  fo r  con t inu i ty  of p r e s s u r e  and  n o r m a l  ve loc i ty  componen t  on the l ine  of the contac t  
d i s con t inu i ty  LOF, we have that  the func t ion  p(x, y) and i t s  f i r s t  d e r i v a t i v e s  a r e  con t inuous  on LOF. Th i s  is  
a consequence  of l i n e a r i z i n g  the p r o b l e m .  

2. In the c a s e  (~l, 2 ( o~, we examine  the flow in  r e g i ons  LBM and LMA (Fig. 1). To d e t e r m i n e  the 
ang les  Yl and/~1, which  d e t e r m i n e  the pos i t i on  of the sound f r on t  LB and of the wedge face d i sp l aced  by the 
flow, we w r i t e  down the r e l a t i o n s  

Do _ c -- U0 cos (al -I- 7a) U,) cos (ctl -- ~1) 
sin al -- sin 71 sin ~1 (2.1) 

which  de r ive  f r o m  the cond i t ion  that,  in the coo rd ina t e  s y s t e m  with the f r on t  LB and the point  of i n t e r s e c t i o n  
of the f ron t s  L fixed, the l i n e s  of the f r o n t s  a r e  fixed. 

We obta in  

Yl = 2 arc tg k0 -- M sin ~ al -- V(k0 -- M sin ~ cqi ~ -{- 1/4 M s sin ~ 2cq -- sin 2 cq 
i/2 i sin 2al -1- sin cq (2.2) 

~11 = aretg [ ( i - -  • tg ~1 / (l + u tg a~)] (k0 = D0 / co) 

H e r e  one of the two so lu t i ons  of the f i r s t  equa t ion  of Eq.  (2.1) i s  chosen  as  s a t i s fy ing  the p h y s i c a l  s e n s e  
of the p r o b l e m .  

We seek  a c o n s t a n t  so lu t ion  in  the r eg i ons  LBM and LMA. Let Un 1 be the d i scon t inu i ty  in  ve loc i ty  p e r -  
t u r b a t i o n  in  p a s s i n g  th rough  1_33; u 1 and w 1 the p e r t u r b e d  ve loc i ty  componen t s  in  r e g i o n  LBM; and Pi the p e r -  
t u r b e d  p r e s s u r e .  

Adding the  condi t ion  at an  acous t i c  d i scon t inu i ty  

Pl = u. l (2.3) 

to the cond i t ions  (1.4) a t  the f ron t ,  and a l so  the  condi t ion  for  con t inu i ty  of the n o r m a l  componen t  of ve loc i ty  
p e r t u r b a t i o n  at the contac t  d i s con t inu i ty  IX) 

--UnPin = ul ~- wl tg (Ctl --~1) (m=. cos(y1 +[~9/cos(ctl-- [~i)) 

and taking  in to  account  tha t  

/ (YL) = 0 

we obta in  a c losed  s y s t e m  of l i n e a r  equa t ions  to d e t e r m i n e  the cons tan t  p a r a m e t e r s  Un i, Pl, wl, ul ,  and f ' .  
T h e n  

kM nvo - -  v' + n (~vo -}- (t -- 2u) v') tg ~ al 
Pl ~ I - - u  2km-}-t  & f - - u ( t - - i ) t g ~ a l  (2.4) 

The r e m a i n i n g  quan t i t i e s  a r e  d e t e r m i n e d  s i m p l y  i n  t e r m s  of Pl f r o m  Eqs .  (1.4) and (2.3). 

The  p a r a m e t e r s  of the c o n s t a n t  flow zones  E C F  and DEF a r e  c a l c u l a t e d  v ia  s i m i l a r  f o r m u l a s .  We 
sha l l  denote  these  quan t i t i e s  by the  s a m e  l e t t e r s '  with s u b s c r i p t  2. 
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We note that at the displaced contact boundary LOF there is a tangential discontinuity in the velocity 
vec tor  perturbation.  

We determine the limiting angle ~ ,  f rom the condition that in the xVy v coordinate sys tem the velocity 
of the point of intersect ion of the fronts  is equal to the sound speed c: 

a ,  = arc sin (ko / t / ' ~ )  (kl -~ ]/'~--~) 

It should be noted that the numera tor  in the express ion for  Pl can general ly go to zero for  a cer ta in  
value o~l. It takes a minimum value for c~1 = c~,, and it is positive for  small  enough c~l. F o r  a solution to 
exist for  all 0 _  < a _  < c~, we require  that the condition 

zkl ~(l + j ) - - k  2 ( l - j ) ~ 0  (2.5) 

be satisfied. 

Here we have simultaneously solved the problem of regular  ref rac t ion of a strong plane shock wave 
at the interface of two slightly different semi-spaces .  F o r  al "* 0 the solution of the problem of a normally 
incident shock is obtained. 

3. F r o m  the condition of p r e s s u r e  continuity in passing through the arc  of the Mach circle,  Eqs.  (1.4), 
and Eq. (1.3), we find the boundary condition for the normal  and tangential derivat ives of the p re s su re  

aSp~an + bOp/Os = d 

Here n is the external  normal  and s is the tangent ingoingaroundABCD positively (Fig. 1) (ABD in 
Fig. 2) 

a =  l ,  b = Bsy - 1 -  (B + k)kl-~y on A D  

a = O, b =  i on A B C D  (ABD)  

d = p~6  (0 - -  0~) - -  p~6 (0 - -  0~) for a l ,~  < % 

d .= (B~k,-~y .-]- AIBsy  -~) (5 (y --  Yl) --  8 (y --  y,)) for al, ~ > {z, 

B~ = k M / k z ~ A ,  6 (0) --  the Dimc delta function 

01 = 0 B = U - ~  (Z 1 - ~  Y I '  0,~ = 0 c = ~ - -  {~2 - - Y 2 ,  Yl = y L  = 

= "ku-lc tg  al, Y~ ~ UF = k• a~, 0 -- arc tg(y/x)  

F o r  x = k  we obtain f r o m  Eq. (1.4) 

t a p  A aw (%~<%) 
y Oy ---- M Oy 

t a~, A aw @ (8 (y - -  yl) - -  8 (y - -  y,)) (%~ > :~.) 

Integrating the la t ter  along the per turbed section of the shock wave AD, we obtain the condition for  
smooth junction of the front 

f i ap . 
(3.1) 

" 0 

AD 

Following the method of functionally invariant Smirnov-Sobolev solutions [4], we t ransfer  the problem 
to the complex variable plane 

z = x x + $Yl = ( r-1 -- ~(', r---s l)exp (~0) 

and put 

p - ImP (z) 

The region of unsteady flow in the complex plane z cor responds  to that shown in Fig. 3. The equations 
of the c i rcu la r  a rc  have the f o r m  

[ ~ t  = 1, 2 1 ~ 1  c~ = k ( i  + l z I ~) 
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We p e r f o r m  c o n f o r m a l  mapp ing  of the i n t e r i o r  of the f igure  to the uppe r  ha l f -p lane  by m e a n s  of the 
t r a n s f o r m a t i o n  

i 2z - -  k ( I  -i" z~) 

H e r e  the a r c  c o r r e s p o n d i n g  to  the sec t ion  AD of  the shock  wave  t r a n s f o r m s  to  the i n t e r v a l -  1 < ~ < 1; 
the points  B and C lie outs ide  this  in te rva l ,  and the points  L and F l ie ins ide  it. 

We in t roduce  the  funct ion 

c~p , : Op dP 
F+ (~) = ~ -  -T- ~ ' ~  = 

which  is  ana ly t i ca l  in the u p p e r  ha l f -p lane  of ~. On the r e a l  axis  F + (~) sa t i s f i e s  the condi t ion 

H e r e  

~ OP __ ( 3 . 2 )  

a ---- ~ ] [ t  --~2, b --~ B~ ~ --  B~ (! ~1 < t) 
a = 0, b = B -- B2 (l~l ~ t) 

d = (BI~ ~ + A1B,)  (6 (~ --  ~a) --  8 (~ -- ~a)) (%~ > ~*) 
~ = ~ ---- k~ -~ (cosec O~ -- k ctg 01), ~ = ~c = kl -~ (cosec O~ - -  k ctg 8~) 

~a ---- ~L : - -  z - ~  ctg a~, ~ : ~F = x. -~  ctg 0~ 

We have thus f o r m u l a t e d  an  inhomogeneous  Hi lber t  p r o b l e m  with cont inuous coef f ic ien ts .  We seek  a 
solut ion of it in the c l a s s  of  func t ions  that  have a z e r o  of at  l eas t  second  o r d e r  at  infinity (this s t e m s  f r o m  
the r e q u i r e m e n t  that  the funct ion p(z) be bounded a s  z ~ o ) .  

The index of the p r o b l e m  is  uni ty if 

0 < k  = ( l - j ) < •  =(i  + j )  (3:3) 

and z e r o  if  

(3.4) 

In case  (3.4) the re  is no solut ion in th is  c l a s s  of funct ions .  To check  this,  it is  enough to Write the so -  
lu t ion fo r  this  c a s e  in the s t a n d a r d  f o r m u l a  (14.22') of [5], p. 265. We note that  the condi t ion k 2 ( l - j )  > 
nk l  2 (1 +j) is the s a m e  as  r e q u i r e m e n t  (2.5). 

The condi t ion f o r  the ex i s t ence  of a solut ion of  Eq.  (3.3) is  equivalent  to the condi t ion fo r  s tabi l i ty  of 
a plane s t a t i ona ry  shock  wave in a homogeneous  m e d i u m  [1, 2]. This  is an in t e res t ing  point,  which c o n f i r m s  
the need  fo r  the l imi ta t ion  (3.3) on the p r o p e r t i e s  of  the m e d i u m  f o r  a s table  shock  to exis t  in  it. 

F r o m  now on we c o n s i d e r  Eq. (3.3) to b e s a t i s f i e d .  We find the r e g u l a r i z i n g  f a c t o r  q(0 of the funct ion 
b (0 + ia (0 by cont inuing the funct ion B~2-B2+ i ~ f ~  T o v e r  the whole r e a l  axis :  

{ ( B ~  - -  B2 + ~ l f~  ~-~- t),, (B - -  S~), ~ ~ l 

q ( ~ ) =  ( B ~ 2 - - B 2 - - ~ l f ~ - ~ - - I ) / ( B - - B ~ ) ,  ~ - - i  

t,  I ~ 1 < t  

M u l t i p l y i n g b o t h  s ides  of  Eq.  (3.2) by  q O ,  we b r ing  it to the f o r m  

Im [F + (~)/(I) + (~)] = q (r d (~) (3.5) 

where  ~+ (0 is  the boundary  value  of  the ana ly t i c  func t ions  defined in the u p p e r  ha l f -p lane  

t 

Here  the r a d i c a l  m u s t  be  f o r m e d  so that  i t  t akes  pos i t ive  va lues  f o r - 1  <}<1 ,  7? = 0. 

F o r  condi t ion (3.3), ~+ (0 has no s ingu la r i t i e s  in the u p p e r  ha l f -p lane ,  including the r ea l  axis .  
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Ext rapo la t ing  the boundary  condit ion (3.5) into the complex  plane and taking into account  that  the func-  
t ion F+(~)/r  m u s t  be r e g u l a r  at infinity, we have 

F+ (~) = ~+ (~) [T+ (~) + 6,ol (3.6) 

Here 

~ -  ( m+ (~) (~ -- ~) m* (~) (5~ - ~) 
*+ (~) = ~ {B15, ~ + AW~ B ~ ;  + A W , ) ,  

The real constant C o is determined from condition (3.1). 

The transformation to the original similarity coordinates is accomplished via the formula 

= y ( ~ - - ~ x ) + ~ ( ~ - - x )  1 / ~ - - ~ - - y  ~ 
k~ (i -- xD 

The p r e s s u r e  is d e t e r m i n e d  f r o m  the f o r m u l a  

Here  

�9 Op 

-1 

PA = p~ fo~ a~,Z < a . ,  p.( : 0 for al,~ ~ a .  

In the case at, 2 > ~,, the pressure (and also f', u, and w) has a logarithmic singularity at the points L 
and F. A similar singularity appears in the case of a subsonic incident shock wave on a thin wedge in the 

Lighthill problem [6, 7]. We note that this singularity vanishes for ~i =(~, and ~i = 0. Here the solution for 

ozl > o~, goes over continuously to that for ~i < ~,. 

Along the curved section AD of the shock wave the pressure distribution has the form 

II/~1 

Ji (3.7) 

[ �9 p~ p., _[: Co] x < 

(B~Z - -  B~)2 _}_ ~2 ( i  - -  ~2) 

2X (~=, - -  ~) U (51 - -  5) " ~  CO ' (D : B I ~  ~ - ~  A1B2 (%,2 > :*) 

H e r e  we should take the in tegra l  in Eq. (3.7) to have the p r inc ipa l  v a l u e .  

The r ema in ing  funct ions a r e  d e t e r m i n e d  in c losed  f o r m  in t e r m s  of p. F o r  example ,  the shape of the 
cu rved  por t ion  of the shock  wave is ca lcu la ted  f r o m  the f o r m u l a  

I (u) = p (u) + y \ T4-Tq k~ -~ 

The funct ions  u and w a r e  d e t e r m i n e d  f r o m  Eq. (1.2): 

f t Op . t Op . u (r, O) = T -  ~ ap + u o (0), w (r, O) = - ~  ~ ap + w o (0) 
r0 O) ro (0) 

H e r e  the in t eg ra t ion  is  p e r f o r m e d  a long the rad ius  

r 0 ( 0  o ~ 0 ~ 2 n - 0 0 )  = i ,  r o ( - - 0 0 ~ 0 ~ 0 o )  = k / c o s 0 .  

Oo = arctg (k~/k) 

and u 0 (0) "and w 0 (0) a r e  the va lues  of  u and w on the boundary  of  ABCD (ABD). 
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We find the shape of the per turbed contact boundary 
S 

, i s )  = - s S ~-~ un (~) dp 
so 

Here s is the coordinate along IX), s0=k /cos  (~l -Pl )  for  o~1 ((~, ,  so= 1 for  ~1 > ~, ,  r (s) is the displace- 
ment of the contact boundary along the normal  to IX), and 

u~ (s) = u (s) cos (~, - ~1) + w (s) s i n  ( a ,  - ~1) 

The shape of the FO boundary can be determined analogously. 

We note that in the case (~1 �9 ~ , ,  (~2 > ~ ,  the solution is  constructed simply by combining the solutions 
with regular  and nonregular  ref rac t ions .  In the special case,  putting ~l = 0, ~2 = ~r/2, we can obtain diffrac- 
tion at a right angle. 

In conclusion we note that there is no theory for  nonregular  refract ion.  The resul ts  obtained in this 
paper  may be of in teres t  f rom this viewpoint. 

The author thanks N. V. Zvolinskii and L. M. Fl i tman for  discussion of the work. 
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